The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity
نویسندگان
چکیده
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
منابع مشابه
Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function
The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding ...
متن کاملCoinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation.
The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection...
متن کاملHost immunity shapes the impact of climate changes on the dynamics of parasite infections.
Global climate change is predicted to alter the distribution and dynamics of soil-transmitted helminth infections, and yet host immunity can also influence the impact of warming on host-parasite interactions and mitigate the long-term effects. We used time-series data from two helminth species of a natural herbivore and investigated the contribution of climate change and immunity on the long-te...
متن کاملRecent Advances in T Cell Signaling in Aging
The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...
متن کاملEpithelial-Cell-Derived Phospholipase A2 Group 1B Is an Endogenous Anthelmintic
Immunity to intestinal helminth infections has been well studied, but the mechanism of helminth killing prior to expulsion remains unclear. Here we identify epithelial-cell-derived phospholipase A2 group 1B (PLA2g1B) as a host-derived endogenous anthelmintic. PLA2g1B is elevated in resistant mice and is responsible for killing tissue-embedded larvae. Despite comparable activities of other essen...
متن کامل